
Introduction
Noncompartmental analysis (NCA) is a useful method to calculate
pharmacokinetic (PK) parameters, however, limitations due to study
design, execution, or nonlinear PK, can lead to inaccurate results.
A solution to this problem is to use a population PK model to simulate
the trial designs necessary to calculate PK parameters accurately.
We demonstrate an automated model-based simulation workflow using a
collection of functions for calculating PK parameters from simulations
performed with NMsim  [1]. The only requirements for the workflow are a
NONMEM installation, a PopPK model written in NONMEM, and the
NMsim  R package.
The method was demonstrated using a publicly available PopPK model
for dacomitib [2].
With the dacomitinib model we explore how the accumulation ratio and
effective half-life can be inaccurately calculated by traditional NCA
methods, but accurately calculated via simulation-based methods.

Methods

Figure 1: Diagram of methodology

The workflow for calculating NCA PK parameters is composed of several
R functions which work together with NMsim  to automatically generate
simulation datasets, simulate, and calculate NCA parameters from the
simulations (Figure 1).
The only requirements for the workflow are (1) a NONMEM model file,
(2) an R installation with the NMsim  package, and (3) basic drug and
dosing information (dose compartment, amount, dosing interval, dosing
rate, approximate time to reach steady-state, and any covariates).
The method for calculating NCA statistics is based on two simulations:
(1) a single-dose simulation and (2) a multiple dosing simulation to
steady state. The single dose simulation allows calculation of all of the
standard statistics such as Cmax, Tmax, , , and . The
multiple dose simulation allows calculation of additional parameters like 

, , , , accumulation ratio (AR) and
effective half-life (EHL, using Cmax, , and ).

Results
Simulation-based generation of NCA summary statistics with NMsim

To use the workflow the user must supply a model file file.mod , a
table of subject-level covariates dt.covs  and dosing information for the
drug (.dose , .dose_cmt , dose_interval , etc. See code below).
A function nca_create_simdata_single_ss()  is called to build the
simulation datasets. A single-dose and multiple dosing dataset with
enough doses to reach steady state are generated with the number of
subjects based on the subject-level covariate dataset passed in the .covs
argument. Dense sampling is included for reliable evaluation of NCA
calculations on simulation results.

A single set of ETAs are generated using simPopEtas_asis()  (similar
to the NMsim function simPopEtas() ) so that identical subjects (with
the same ETAS) are compared across the single- and multiple-dose
simulations.

The dataset is simulated with NONMEM using NMsim  with the
NMsim_EBE()  method which allows us to pass in a .phi  file containing
ETA values for each ID in the dataset. Figure 2 shows the concentration-
time profiles of the single- and multiple-dose simulations for a single
subject (panels A and B), and for the full population (panels C and D).

Figure 2: Simulated concentration time profiles produced by the automated workflow.

NCA PK parameters are calculated for each individual in the simulation
via calc_nca_parameters()  and these PK parameters are
summarized by summarize_nca_parameters()  which produces the
output shown in Table 1.

Table 1: PK parameters from single- and multiple-dose simulations.

Median
(min,max) Mean (CV%)

Regimen N Tmax
(h)

Cmax 
(ng/mL)

 
(ng

hr/mL)

  
(ng

hr/mL)

 
(h)

Single dose 24 21.0 (15.5,34.5) 15.7
(27.1) 222 (32.4) 1310

(24.9)
64.8

(19.2) –

Multiple
dose 24 15.0 (13.0,18.0) 56.8

(24.9)
1200
(24.9)

5810
(36.2) – 87.0 (34.8)

Accumulation Ratio can be more accurately calculated via simulation
for drugs with long absorption half-life

Accumulation ratio (AR) and effective half-life (EHL) are commonly
reported parameters for multiple-dose PK studies, and are particularly
important for determining dosing in drugs with nonlinear PK. The AR is
commonly calculated by dividing an exposure metric (usually 
or Cmax) at steady state by the same metric after a single dose.

 and  are not obtained from the same
subjects in most drug development programs and therefore cannot be
used to calculate the AR, however, it is possible to obtain these values for
the same individual using simulation.
Table 2 shows the AR and EHL for dacomitinib, demonstrating that AR
and EHL are highly dependent on the PK parameter used to calculate
them.

Table 2: Dacomitinib accumulation ratio (AR) and effective half-life (EHL)
calculated with different exposure metrics.

Mean (CV%)

N

24 5.74 (31.6) 4.37 (18.0) 3.67 (15.5) 87.0 (34.8) 64.1 (20.5) 52.3 (18.3)

Dacomitinib has linear PK, and the  calculated from a single-dose
population simulation was 64.8 hours (Table 1). The EHL calculated
using  was closest to the true  when compared to 
and  (Table 2).
The proportion of AUC captured by  versus  for
dacomitinib is relatively small (Figure 3 A), which helps explain why the
EHL based on  is less accurate for dacomitinib.

Figure 3: AUC tau versus AUC infinity for dacominitib

Figure 3 (B) shows that faster or slower absorption (controlled by mean
transit time (MTT)) can change the  to  ratio. Table 3
shows that in general  is more accurate than  or 

 across a range of  to  ratios.

Table 3: Dacomitinib effective half-life (EHL) across models with
different MTT and AUC tau to AUC infinity ratios.

Mean (CV%)

model N /

MTT x 0.25 24 0.27 48.8 (24.1) 58.0 (22.4) 39.3 (24.0)

MTT x 0.50 24 0.24 57.6 (27.9) 59.9 (21.8) 43.1 (21.3)

unmodified 24 0.17 87.0 (34.8) 64.1 (20.5) 52.3 (18.3)

MTT x 2 24 0.087 183 (42.0) 72.5 (18.5) 70.5 (16.4)

MTT x 4 24 0.033 510 (47.3) 89.5 (15.8) 100 (15.7)

Conclusions
PopPK model simulations can be an essential tool to calculate accurate
PK parameters.
The publicly available simulation-based workflow presented can serve as
a resource for researchers in need of a method to calculate PK parameters
via simulation due to data limitations in PK studies.
Accumulation ratio and effective half-life can be more accurately
calculated using  compared with  or Cmax for drugs with a
long absorption half-life, as was shown for dacomitinib, and this method
is usually only possible with a simulation-based approach.
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set.seed(1234)  
# data.frame of covariates and ID's used in `.covs` below.  
# `PPI` is a covariate representing proton pump inhibitor use in the dacomitinib 

model  
dt.covs = tibble(ID=1:24, PPI = 0)  
# create the simulation dataset  
simdata = nca_create_simdata_single_ss(  
    # Dose of drug to simulate  
    .dose = 45*1000,  
    # dosing compartment in model  
    .dose_cmt = 1,  
    # observation compartment in model  
    .obs_cmt = 2,  
    # dosing interval  
    .dose_interval = 24,  
    # dose rate (RATE in NONMEM dataset)  
    .dose_rate = 0,  
    # time to reach steady-state in days for dosed drug  
    .days_to_ss = 30,  
    # data.frame of subject-level covariates  
    .covs = dt.covs  
    )

print(as.data.table(simdata[,-11] %>% group_by(regimen) %>% slice_head(n=2)))  
#>       ID  TIME  EVID   CMT   AMT    II  ADDL  RATE   MDV    regimen 
#>    <int> <num> <num> <num> <num> <num> <num> <num> <num>     <char> 
#> 1:     1     0     1     1 45000     0     0     0     1 singledose 
#> 2:     1     0     2     2    NA    NA    NA    NA     1 singledose 
#> 3:    25     0     1     1 45000    24    29     0     1         ss 
#> 4:    25     0     2     2    NA    NA    NA    NA     1         ss

file.mod = here("models/mod_dacomitinib_transit_iiv.mod") 
Nsub = nrow(distinct(dt.covs, ID))  
sim.file.phi = here("simres/simulated_etas_mod_dacomitinib_transit.phi") 
dt.etas = simPopEtas_asis(  
  file.mod = file.mod,  
  N = Nsub,  
  seed = 1234  
)  
# re-use the generated ETAS across both simulations 
dt.etas = bind_rows(dt.etas, mutate(dt.etas, ID = ID+Nsub))  
NMsim::genPhiFile(data = dt.etas, file = sim.file.phi )

sim.result =  
    NMsim(  
    # path to NONMEM model
    file.mod = file.mod,  
    # Simulation method that uses provided ETAs (in .phi file)   
    method.sim = NMsim_EBE,  
    # PHI file generated above by NMsim::genPhiFile()  
    file.phi = sim.file.phi,  
    method.update.inits = "none",  
    data = simdata,  
    name.sim = "single_ss"  
  )

subject_pars =  
  calc_nca_parameters(  
    .simdata = sim.result,  
    .conc_col = "IPRED",  
    .dosing_interval = 24  
  )  
subject_pars = left_join(subject_pars, dt.covs) # add back covariates 
par_summary =  
  summarise_nca_parameters(.nca_pars = subject_pars, .by = "PPI")
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