
Introduction
While NONMEM offers great flexibility for estimation of PK and
PK/PD models, many users find the simulation features in NONMEM
insufficient and turn to alternative software for simulation. This leads
to additional work of model reimplementation, with risk of the
simulation model deviating from the estimated model, due to bugs in
the reimplementation. For a wide range of model types, the limitation
is not in NONMEM’s ability to perform such simulations, but rather
in the lack of a simple user-interface to obtain the simulations. NMsim
(Delff 2024b) provides such an interface as an R package, allowing
the modeler to simulate models as soon as an estimate is available.

Objectives
The goal for NMsim is to automate the NONMEM simulation
workflow and provide a simple, flexible, and powerful R interface.
With this automation, post-processing of model estimates can to great
extends be automated.

NONMEM Third-party NMsim

Implementation None Potentially error-
prone None

Execution Tedious Easy Easy

Depends on
NONMEM Yes No Yes

Runtime Fair Fast Fair

Methods
NMsim does not simulate, translate or otherwise interpret a
NONMEM model. Instead, it automates the NONMEM simulation
workflow (including execution of NONMEM) and wraps it all into
one R function. Provided with a path to a NONMEM control stream
and a data.frame to simulate, NMsim will do the following:

Save the simulation input data in a csv file for NONMEM
Create a simulation input control stream based on file.mod

($INPUT and $DATA matching the saved simulation data set;
$SIMULATE instead of $ESTIMATION and $COVARIANCE)
Update and fix initial values based on estimate (from file.ext)
Run NONMEM on the generated simulation control stream
Collect output data tables, combine them, and merge with the
simulation input data
Return the collected data in R

NMsim can call NONMEM directly or via PSN . If NMsim is run on a
system where NONMEM cannot be executed, NMsim can still
prepare the simulation control stream and datafile.

NMsim is in itself a relatively small R package. It makes extensive
use of functionality to handle NONMEM data and control streams
provided by the R package NMdata (Delff 2024a).

Results
When providing a simulation data set, the default NMsim() behavior
is to sample a new subject (ETA’s).

Figure 1: PRED , IPRED , and Y (if defined in control stream) are easily
obtained with NMsim.

Notice that no information about the model is needed except for the
control stream file path. The simulation is based on evaluation of
PRED , IPRED , and optionally Y . Options exist for building more
advanced simulation models. The models shown here are based on
data available in the xgxr (Stein et al. 2021).

Generation of simulation data sets
The simulation input data set is a data.frame, and NMsim() returns a
data.frame. The input data is a data.frame that

Must contain at least the variables NONMEM will need to run the
model (typically ID , TIME , CMT , AMT , etc. plus covariates)
Can contain character variables (automatically carried to results)
Column order does not matter

There are no requirements to how the data sets are created. NMsim
provides convenient helper functions that can optionally be used.
E.g., the data set used in these simulations can be created this way:

Typical subject simulation

A typical subject is a subject with all ETAs = 0
Covariates values are supplied using the simulation input data set
typical=TRUE : replace all $OMEGA values with zeros

Simulate multiple models
Multiple models can be simulated using the same data set in one
function call by supplying more than one model in the file.mod
argument. The models can be simulated on multiple data sets by
submitting a list of data.frames in the data argument. NMsim will
return one data.frame with all the results for easy post-processing.

Figure 2: Simulation of multiple models and even multiple data sets is
handled within one NMsim() call.

Emperical Bayes’ Estimates (known ETAs)

By default, automatically re-uses estimated individual ETAs
ID values in simulation data must match the ID values in the
estimation that you want to simulate
Other ETA sources can be specified
Does not simulate residual variability - see addResVar() if needed
Remember: Covariates may be needed in data set to fully reproduce
the subjects’ parameters

Figure 3: Individual parameters are confirmed to be identical in estimation
results and simulation results

Prediction intervals
New subjects can be simulated in multiple ways with NMsim.

If the input data set contains multiple subjects, these subjects will get
separate random effects due to NONMEM $SIMULATION
The subproblems argument translates to the SUBPROBLEMS

NONMEM subroutine, replicating the simulation the specified
number of times with new seeds
The simPopEtas() function can generate a synthetic .phi file with
a simulated population that can be reused in future NMsim() calls.
This can be combined with simulation of covariates in R, allowing
reuse of the same subjects across multiple simulations.

Figure 4: Prediction intervals. New subjects can be simulated in multiple
ways with NMsim. A simulated population can be reused across simulations.

Configuration and Important NMsim() arguments
NMsim must be configured with the path to the NONMEM
executable. This can be done for each NMsim() call using the
path.nonmem argument, but more easily it can be configured
globally the following way. Also including where NMsim will run
NONMEM and store intermediate files (dir.sims) and where to
store final results (dir.res).

NMsim() has many features which are explained and demonstrated
in manuals and vignettes. A few often-used arguments are

table.vars : Redefine the output table. This can dramatically
speed up simulations. E.g., table.vars=c("PRED","IPRED") .
name.sim : Assign a name to the simulation and the generated files.
Keeps order and separates results files between simulations.
seed.R and seed.nm : Define seed, either through R, or directly as
the seed used in NONMEM simulation control stream.

See also
See the NMsim website for code, more
publications, vignettes and news.

Related posters at ACoP 2024:

Simulation of clinical trial predictions with
model uncertainty using NMsim (T110)
Building Automated Pharmacometrics Analysis Workflows in R with
NMsim (T49)
Simulate modified Nonmem models using NMsim (T19)
A Model-Based Simulation Workflow Enables Automated and
Accurate Generation of Clinical Pharmacology Summary Statistics
(T103)

References
Delff, Philip. 2024a. NMdata: Preparation, Checking and Post-
Processing Data for PK/PD Modeling.
https://philipdelff.github.io/NMdata/.
———. 2024b. NMsim: Seamless Nonmem Simulation Platform.
https://philipdelff.github.io/NMsim/.
Stein, Andrew, Alison Margolskee, Fariba Khanshan, and Konstantin
Krismer. 2021. Xgxr: Exploratory Graphics for Pharmacometrics.
https://opensource.nibr.com/xgx/.

NMsim - Seamless NONMEM Simulation Platform in R
Philip Delff1

1 Vertex Pharmaceuticals Incorporated

library(NMsim) ## Used version 0.1.4

file.mod <- system.file("examples/nonmem/xgxr021.mod",

 package="NMsim")

data.sim <-

read.csv(system.file("examples/derived/dat_sim1.csv",

 package="NMsim"))

simres <- NMsim(file.mod=file.mod,data=data.sim)

doses <- NMcreateDoses(TIME=c(0,24),AMT=c(300,150),

 addl=list(ADDL=c(0,5),II=c(0,24)),CMT=1)

dat.sim <- addEVID2(doses,TIME=0:(24*7),CMT=2)

simres.typ <- NMsim(file.mod=file.mod,data=data.sim,

 typical=TRUE)

file2.mod <- "models/xgxr114.mod"

simres.typ2 <- NMsim(file.mod=c("2 compartments"=file.mod,

 "1 compartment"=file2.mod),

 data=data.sim,

 typical=TRUE)

The "model" column is used to distinguish the two models

subset(simres.typ2,EVID==2) |>

 ggplot(aes(TIME,PRED,colour=model))+

 geom_line()

Example using same simulated dosing+sampling for all subjects

library(NMdata)

res <- NMscanData(file.mod,quiet=T)

ids <- unique(res$ID)[1:5]

data.sim.ind <- merge(subset(data.sim,select=-ID),

 data.frame(ID=ids))

setorder(data.sim.ind,ID,TIME,EVID)

simres.ebe <- NMsim(file.mod,

 data=data.sim.ind,

 method.sim=NMsim_EBE,

 table.vars=c("CL","V2","IPRED","PRED")

)

simres.subprob <- NMsim(file.mod=file.mod,

 data=data.sim,

 name.sim="Subproblems",

 subproblems=1000)

data.sim.nsubjs replicates data.sim for each subject,

with sampled covariates

simPopEtas(file.mod=file.mod,N=1000,seed=1231,

 file.phi="simres/xgxr021_1000subjs.phi")

simres.datarep <- NMsim(file.mod=file.mod,

 data=data.sim.nsubjs,

 method.sim=NMsim_EBE,

 file.phi="simres/xgxr021_1000subjs.phi",

 name.sim="datarep")

simres.newsubjs <- rbind(as.data.table(simres.subprob),

 as.data.table(simres.datarep),

 fill=T)

library(NMdata)

NMdataConf(path.nonmem = "/opt/NONMEM/nm75/run/nmfe75")

or on Windows, it could be

NMdataConf(path.nonmem = "c:/nm75g64/run/nmfe75.bat")

NMdataConf(dir.sims="simtmp", ## location of sim tmp files

 dir.res="simres") ## location of sim results

